Exercise 8

(a) Write $(x, y)+(u, v)=(x, y)$ and point out how it follows that the complex number $0=(0,0)$ is unique as an additive identity.
(b) Likewise, write $(x, y)(u, v)=(x, y)$ and show that the number $1=(1,0)$ is a unique multiplicative identity.

Solution

Part (a)

$$
(x, y)+(u, v)=(x, y)
$$

Adding the two complex numbers on the left side, we get

$$
(x+u, y+v)=(x, y)
$$

In order for equality to hold, the real and imaginary parts of both sides must be equal. That is,

$$
x+u=x \quad \text { and } \quad y+v=y .
$$

This is a system of two equations for two unknowns, u and v. Solving it yields $u=0$ and $v=0$. Therefore, $(0,0)=0+0 i$ is the unique additive identity for complex numbers.

Part (b)

$$
(x, y)(u, v)=(x, y)
$$

Multiplying the two complex numbers on the left side, we get

$$
(x u-y v, u y+x v)=(x, y) .
$$

In order for equality to hold, the real and imaginary parts of both sides must be equal. That is,

$$
x u-y v=x \quad \text { and } \quad u y+x v=y .
$$

This is a system of two equations for two unknowns, u and v. Solving it yields $u=1$ and $v=0$. Therefore, $(1,0)=1+0 i$ is the unique multiplicative identity for complex numbers.

